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The aim of the present work, final of a three-part series, is to analyse in detail flow
motions within the swash zone and define suitable shoreline boundary conditions for
the longshore flow for wave-averaged circulation models. The analyses of Parts 1 and
2 are extended to cover horizontally two-dimensional flows. An analytical solution
for the longshore motion representing the drift velocity of the whole swash zone
water mass is found. This is seen to be approximated well by the ratio between the
time integral of the longshore momentum flux crossing the swash lower boundary
and the swash zone net water volume. Further, a complete set of shoreline boundary
conditions, taking into account wave–wave interactions, is obtained on the basis of
fully numerical solutions of the nonlinear shallow-water equations. The main focus
of the work is to clarify the structure of the shoreline boundary conditions for the
longshore flow, but attention has also been paid to their derivation and assessment
from the numerical solutions. The latter have been obtained on the basis of a fairly
broad range of input wave conditions which, though biased towards those typical of
reflective beaches, are believed to cover conditions also typical of moderate dissipative
beaches. Two main terms are found to contribute to the longshore drift velocity:
(i) a term, proportional to the shallow-water velocity, accounting for short-wave
interactions, frictional swash zone forces and continuous forcing due to non-breaking
wave nonlinearities and (ii) a drift-type term representing the momentum transfer
due to wave breaking.

1. Introduction
Swash zone dynamics deeply influence the surf zone hydro- and morphodynamics

(see Elfrink & Baldock 2002 for a detailed review). The role played by such dynamics
on the longshore drift and sediment transport is crucial (e.g. Kamphuis 1991; Van
Wellen et al. 2000). ‘The two issues requiring most urgent research attention with
regards to swash zone sediment transport processes are the roles of sediment advection
and longshore swash motion’ (Masselink & Puleo 2006). Moreover swash zone flows
are of fundamental importance not only because of their local effects (e.g. structures
overtopping, longshore sediment transport, beach and dune erosion, etc.), but also
because they influence the surf zone dynamics as a whole (e.g. Russel 1993; Brocchini
2006). For this reason, any models reproducing flow motions in the nearshore should
not neglect swash zone dynamics.
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However, problems arise because wave-averaged circulation models (averaging
over the typical period of wind waves) cannot deal with swash zone flows directly.
Often, a pragmatic perspective is taken for which a ‘wall boundary’, i.e. a perfectly
reflecting vertical wall positioned at a given cross-shore location (usually the still-water
shoreline) is used. This approach, however, significantly alters the natural flow pattern
of seaward-reflected waves (e.g. Brocchini 2006), with an overestimate of the high-
frequency content (short waves are fully reflected) and an understimate, of the order
of 10%–30%, of the low-frequency content (no wave–wave interaction in the swash
zone is allowed for). Hence, the need for suitable shoreline boundary conditions
(SBCs) which take into account the presence of the swash zone.

Assumptions made to obtain circulation models, both horizontally two-dimensional
(2DH) (e.g. Park & Borthwick 2001) and quasi-three-dimensional (e.g. Van Dongeren
& Svendsen 2000), limit their capability to reproduce natural flow conditions which oc-
cur at the boundary between the wet and dry domains. It is particularly worrying that
the more frequently used simplifications lead to unrealistically weak seaward radiation
of low-frequency waves (LFW are waves with periods ranging between 30 s and 300 s)
which, in turn, provides an incorrect forcing for the nearshore sediment transport.

If the wet/dry boundary is taken as the intersection of the mean water level with the
beach face, both theoretical and practical problems arise: flow integration would occur
also during periods of local dry conditions. Even worse would be to average flow prop-
erties at the instantaneous shoreline and regard them as swash zone boundary condi-
tions (as for the model by Zhao & Svendsen 2006): not only does the above theoretical
problem remain unsolved but no wave–wave interactions, fundamental for a correct
energy partitioning of the nearshore flows (e.g. Mase 1995), can be accounted for.

Such interaction is particularly important in the case of reflective beaches on which
waves are not so strongly depth limited, it is relatively less important in the case of
dissipative beaches over which much of the LFW content is due to standing waves.
Hence, if use of suitable SBCs is essential to reproduce frequency downshifting over
reflective beaches, it is also important, though less crucial, to establish the correct
location of the standing-wave nodal points over dissipative beaches.

Analysis of different definitions for the mean shoreline made by Brocchini &
Peregrine (1996), has revealed that such an interface cannot be uniquely defined;
but problems can be overcome if the boundary between wet and dry is taken as
the envelope of the rundown positions, since flow properties can be unambiguously
defined in the wet region.

The main aim of our work is to define, along such an envelope, suitable SBCs for
wave-averaged circulation models which take into account the proper dynamics of
the swash zone. The integral model proposed in Part 1 (Brocchini & Peregrine 1996)
is used and the detailed analysis for horizontally one-dimensional flows (1DH) given
in Part 2 (Brocchini & Bellotti 2002) and validated through large-scale laboratory
experiments by Bellotti, Archetti & Brocchini (2003), is extended to the 2DH case.
Such an extension, as well as completing the analysis of the hydrodynamic problem, is
of fundamental importance since sediment transport and flow–structure interactions
strictly depend on the longshore motion. The main challenge in describing such
motion is represented by (i) making use of an appropriate definition of the swash
zone drift velocity and (ii) the correct modelling of the continuous forcing of the
longshore velocity component caused by nonlinearities and wave breaking.

In § 2, the integral model is extended and clarified for the 2DH case, while § 3
describes an analytical solution for the longshore flow. Closures required for practical
applications and the final set of SBCs are proposed in § 4. Conclusions are given in § 5.
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2. The integral model
The model we consider makes use of the nonlinear shallow-water equations (NSWE)

obtained assuming that vertical accelerations of the water or those normal to the
beach are negligible compared with gravity. We introduce basic definitions, choosing
the still-water level to be z = 0 (z pointing upward), the onshore coordinate x to
point landward with x =0 at the still-water shoreline and the total water depth
to be

d(x, y, t) = h(x, y) + η(x, y, t), (2.1)

where z = −h(x, y) is the seabed location, z = η(x, y, t) is the position of the free
surface and y is the longshore coordinate oriented to make with x and z a right-
handed Cartesian reference frame. The onshore and longshore velocity components
u(x, y, t) and v(x, y, t) are the depth-independent horizontal velocities.

We assume motions to occur over an uniformly plane beach with mild longshore
variations. These assumptions, which allow for the use of an analytical treatment of
the problem, are not too restrictive for most of the natural swash flow conditions for
which beaches are almost planar or piecewise planar (a change of slope may occur near
the shoreline at the beginning/end of storms) and waves, rotated by refraction with
fronts almost parallel to the shoreline, characterized by a weak longshore variation
(see Ryrie’s 1983 approximation and also equation (3.1) which follows). Then we can
suppose h,x = α and h,y = 0 (the notation (.),i is used for partial differentiation with
respect to the variable i). The dimensional general set of equations in conservation
form is (see Part 1):

d,t +(ud),x +(vd),y = 0, (2.2a)

(ud),t +
(
u2d + 1

2
gd2

)
,x +(uvd),y +αgd + τ1 = 0, (2.2b)

(vd),t +(uvd),x +
(
v2d + 1

2
gd2

)
,y +τ2 = 0, (2.2c)

where g is acceleration due to gravity and τ = (τ1, τ2) = (Cf |u|u, Cf |u|v) is the
bed friction evaluated, in terms of the friction coefficient Cf , on the basis of a
steady-flow approach. Although formally more complicated, unsteady approaches are
now available (e.g. Nielsen 2002), the typical Chezy-type formulation is shown to
provide accurate enough results (e.g. Archetti & Brocchini 2002) and is fairly easily
incorporated into the integral swash zone model used in the analysis which follows
(e.g. Archetti & Brocchini 2002; Bellotti et al. 2003).

When the NSWE are numerically integrated for the surf and swash zone flows, the
third equation provides an oscillatory solution with a mean growing, over times longer
than typical modulations (e.g. Ryrie 1983), because of nonlinear momentum transfer
from the cross-shore to the longshore direction (e.g. Longuet-Higgins 1970). This
represents a challenge when replacing the swash zone by a simplified model, capable
of providing appropriate SBCs at the seaward swash zone limit for wave-averaged
solvers.

In our model, the swash zone limits are xl (seaward or lower limit) and xs

(instantaneous shoreline, i.e. shoreward or higher limit for integration). The seaward
boundary is taken as the lowest limit of the shoreline (see figure 1). The above
equations are integrated over the swash zone with the assumption that wave motion
evolves on a ‘fast time scale’ Ts (short-period waves), while the lowest swash zone
boundary, xl (run-down), is supposed to vary on a ‘slow time scale’ T (2)

s (long-period
waves). We identify the ‘fast time scale’ Ts with the typical period of each single
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Figure 1. Sketch of the flow evolution of the swash zone at a given time (t = 33 s). Bimodal
waves with offshore wave heights Hs =0.17 m, H

(2)
s = Hs/4 and periods Ts = 4.8 s, T

(2)
s = 5Ts

evolve over a uniformly sloping beach of slope α = 0.1 and with friction coefficient Cf = 0.01.
The offshore boundary is placed at a depth d0 = 1 m. The instantaneous local shoreline (xs),
the envelope of the rundown positions (xl) and an indication of the bore paths (thick dashed
lines) are illustrated.

incident wave and the ‘slow time scale’ T (2)
s with the typical period of modulation of

incident short waves. In accordance with the assumptions used in Part 1 to formulate
the integral swash zone model, seen to reproduce experimental conditions successfully
(Bellotti et al. 2003), we assume that (Part 1) ‘swash motions are almost entirely
governed by short-wave contributions and that the only long-wave contribution
comes from parameterizing the longshore drift due to wave-breaking by a longshore
current velocity W = W (y, t).’ Hence, we use the following decomposition:

u =
∂xl

∂t
+ û, (2.3)

where û is the cross-shore velocity inside the swash zone.
Since we aim at defining a longshore drift velocity W for the entire swash zone,

a slightly different decomposition, which makes use of the spatial average over the
swash width, is employed. We thus introduce the swash-averaging operator M{.}
which applied to the generic function f , leads to:

M{f } ≡ 1

xs − xl

∫ xs

xl

f dx. (2.4)

Hence, with a definition similar to that of a Stokes drift-type velocity (e.g. Brocchini
1997), we put

v = W + v̆ in which W ≡ 〈M{v}〉 and 〈M{v̆}〉 = 0, (2.5)

in which 〈〉 indicates the average over the short-period waves. Note that, differently
from (2.3), the decomposition in short and long waves of the longshore momentum
equation is made after the spatial average over the swash is performed. Hence, the
velocity fluctuation v̆ has to obey an integral constraint as given in (2.5). Moreover,
we assume that only W can take into account the action of bores eventually forcing
the swash dynamics.
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Figure 2. Labelling of initial times for individual runups and indication of bore paths
(thick dashed lines).

In fact, defining tk (see figure 2) the kth instant for which xs = xl , if |t − tk| � 1 we
can write xs = xl + ε with ε � 1 and, consequently, we have:∫ xs

xl

f dx =

∫ xl+ε

xl

f dx ≡ F (ε) = F (0) +
dF

dx
(0)ε + O(ε2) � f |xl

(xs − xl). (2.6)

Using (2.6), it follows that

lim
t→tk

W = lim
t→tk

〈M{v}〉 = 〈v(xs(tk), ys(tk), tk)〉. (2.7)

in which ys indicates the longshore coordinate of the shoreline. Since a bore eventually
occurs between two subsequent swashes, from (2.7) we obtain W → 〈vk〉− as t → (tk)

−

and W → 〈vk〉+ as t → (tk)
+, so that the jump in the long-period component of

the longshore velocity is [[〈v〉]]+− ≡ 〈vk〉+ − 〈vk〉− = [[W ]]. Finally, since we can assume
[[〈v〉]] � [[v]], such a result confirms that W can take into account the breaking-induced
jump in longshore velocity. Moreover, since the spatial average of v̆ represents a short-
wave contribution, we assume that all the integral quantities containing v̆ represent
short-wave terms. Note that definition (2.5) of W, notwithstanding its simplicity,
cannot explicitly express the main contributions we are searching for: the local
instantaneous forcing due to nonlinearities and the periodic momentum transfer due
to wave breaking.

In order to have a clear decomposition of the flow dynamics, we substitute (2.3)
and (2.5) into the equation of longshore momentum (see Part 1 for more details on
the derivation of the integral equations), obtaining:

∂〈WV 〉
∂t

+
∂〈P̆ 2〉

∂t
+

∂〈W 2V 〉
∂y

+2
∂〈WP̆ 2〉

∂y
+

∂〈M̆22〉
∂y

+〈Υ2〉 =

[〈(
u − ∂xl

∂t

)
vd

〉]
xl

=

(
〈u〉 − ∂xl

∂t

)
〈v〉〈d〉 + 〈ũṽ〉〈d〉 + 〈ũd̃〉〈v〉 + 〈ṽd̃〉

(
〈u〉 − ∂xl

∂t

)
+ 〈ũṽd̃〉, (2.8)

where

V ≡
∫ xh

xl

d dx, Υ2 ≡
∫ xh

xl

τ2 dx, (2.9)

P̆ 2 ≡
∫ xh

xl

(v̆d) dx, M̆22 ≡
∫ xh

xl

(
v̆2d + 1

2
gd2

)
dx, (2.10)
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Cf Ts(s) Hs(m) θ (deg.)

0.01 3.2∗ 0.10 4
0.03 4.8	 0.14 6
0.05 6.4 0.17 8
0.07 0.20 10

0.23

Table 1. Input parameters used to obtain the fully numerical NSWE solutions used to assess
the value of the model equations. Ts and Hs are the short-wave period and height, θ is the
angle of incidence to the beach normal of the waves evaluated at the seaward boundary of
the sloping region, Cf is the frictional coefficient. The period indicated by ‘∗’ is used only for
JONSWAP spectra, while that indicated by ‘�’ only for bimodal waves.

and the following short/long wave decomposition is used seaward of xl , i.e. in the
inner surf zone:

u = 〈u〉 + ũ, v = 〈v〉 + ṽ, d = 〈d〉 + d̃, 〈ũ〉 = 〈ṽ〉 = 〈d̃〉 = 0. (2.11)

Evaluation of the integral model (see Parts 1 and 2) is made on the basis of fully
numerical solutions of the 2DH NSWE (2.2), i.e. inclusive of the longshore flow
propagation, computed with the shock-capturing solver of Brocchini et al. (2001).
Such a solver, implementing accurate shoreline boundary conditions (see their § 4)
based on the appropriate solution of a wet/dry Riemann problem, provides an
accurate description of swash zone flows, essential for the analyses which follow. In
this respect, a numerical discretization has been used such that the swash zone width
is always discretized with at least 10 grid points. To clearly assess the value of the
above model equation, we use, as in Part 2, either irregular waves obtained through a
JONSWAP spectrum and bimodal waves to check the balance between the left-hand
side and the right-hand side of (2.8).

For such an initial analysis (others follow in § 4 for the model calibration and
final evaluation), we used an uniformly sloping beach of slope α = 0.1 and a Froude-
type scaling was considered, resulting in the input data of table 1. The input wave
values, chosen also in view of feasible NSWE simulations (i.e. waves not too steep
at the offshore boundary), cover a rather broad range of natural conditions: for a
1:7 geometric scaling to prototype, we find 8 s� Ts � 17 s and 0.7 m� Hs � 1.5 m.
Moreover, they closely match typical input wave conditions used in experimental
analyses both of specific swash zone phenomena (e.g. Baldock et al. 2005) and of
overall nearshore hydro-morpho-dynamics (e.g. Wang et al. 2002).

In the case of JONSWAP spectra, Ts and Hs are the short-wave significant period
(about 0.78 of the peak period) and height; for regular waves, Ts ≡ T and Hs ≡ H

are the short-wave period and height; whereas for bimodal waves, modulations were
obtained by the interaction of the short wave with a secondary signal (H (2)

s , T (2)
s ) =

(0.25Hs, 5Ts). Longshore flow components are forced by varying the incidence angle
θ of unidirectional waves at the offshore boundary over the range reported in table 1.
Incident waves evolve over a wide computational domain in the longshore direction
and open lateral boundary conditions are used. Also note that in the cases forced
by regular waves (see analysis of § 4), periodicity is established after 3–4 short-
wavelengths at most.

In summary, a total of 80 numerical solutions for regular waves, 20 for JONSWAP
spectra and 5 for bimodal waves have been used for the comparative analysis which
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Figure 3. The balance between the left-hand side (solid line) and the right-hand side (dashed
line) of equation (2.8). The longshore momentum growth due to wave breaking is evident.
Flow conditions are described in the caption to figure 1.
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Figure 4. Drift velocity comparisons. The numerical solution (2.5) is illustrated by the dotted
line while the exact solution (3.9) and the approximate one (3.11) are given, respectively, by
the solid and dashed lines. The growth of W due to wave breaking is evident. Flow conditions
are described in the caption to figure 1.

follows, and, based on simulations, run for a time sufficiently long to remove any
influence of the initial transient (i.e. approximately 15Ts).

Figure 3 shows a typical example of the left-hand side/right-hand side balance
evaluation. Since one-sided computations of derivatives with finite differences at
boundaries lead to errors larger than those evaluated at the interior of the domain,
it is always useful to discard boundary points in comparisons. Hence, the reduced
longshore domain of figures 3 and 4. Also note that, since we compute only first-order
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derivatives, the errors made near the boundaries do not propagate to the interior
points (subsequent derivatives make use of the function and not of its derivative).
The aperiodic shape of the signals, in the chosen longshore window, is due to the
interaction within the domain of short and long waves while differences between the
two signals are due to: (i) one theoretical cause, i.e. the required parameterization of
some contributions appearing at the left-hand side (e.g. 〈Υ2〉) in terms of the model
variables; and (ii) the numerical discretization used to obtain the fully numerical
solutions. Although the latter can be, in principle, reduced by decreasing the grid size,
the former is unavoidable as it is intrinsic to the model. Since average differences are
in the order of a few per cent, it seems clear that (2.8) provides a good starting point
for defining the longshore SBCs which follow.

3. An analytical solution for the longshore motion
Analysing in detail equation (2.8) we extend the results of Part 2 to the case

of weakly 2DH motion. We introduce Ryrie’s (1983) approximation by considering
waves incident at the seaward boundary of the sloping region with a small angle θ to
the beach normal.

Since waves approaching a beach from deep waters are refracted towards the shore,
so that θ becomes quite small, the above restriction is not too severe. We, thus,
introduce a pseudotime t ′ and a small parameter ε such that

t ′ = t − εy, (3.1)

and assume that this is the only y-dependence for the flow. For example, this occurs
for a regular train of waves approaching the beach at an angle θ with the shore
normal, with an offshore velocity c, where ε = sin(θ)/c (constant by Snell’s law) and
c is the shallow-water wave velocity

√
gd . This kind of approach can be extended to

any beach that has a weakly-varying topography in the longshore direction. Use of
(3.1) into (2.8) leads to:

d

dt ′ [W 〈V 〉 + 〈P̆2〉 − εW 2〈V 〉 − 2εW 〈P̆2〉 − ε〈M̆22〉] =

〈(
u − ∂xl

∂t

)
vd

∣∣
xl

〉
− 〈Υ2〉. (3.2)

For the sake of brevity, we rewrite (3.2) in the following compact form:

d

dt ′ PW (t ′) = B(t ′) ⇒ PW (t ′) − PW (t ′
0) =

∫ t ′

t ′
0

B(τ ′) dτ ′ (3.3)

in which:

PW (t ′) ≡ [W 〈V 〉 + 〈P̆2〉 − εW 2〈V 〉 − 2εW 〈P̆2〉 − ε〈M̆22〉], (3.4)

B(t ′) ≡
〈(

u− ∂xl

∂t

)
vd

∣∣∣∣
xl

〉
− 〈Υ2〉. (3.5)

We denote the time of the beginning of the first run-up as t ′
0 and the time at which

the kth swash ends as t ′
k (see also figure 2). At such instants, xs = xl , and so all the

integral quantities vanish. In particular,

PW (t ′
k) = 0 ∀k ∈ � ⇒ PW (t ′

0) = −
∫ t ′

k

t ′
0

B(τ ′) dτ ′ ∀k ∈ �. (3.6)
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Substituting this result into (3.3), we obtain

PW (t ′) =

∫ t ′

t ′
k

B(τ ′) dτ ′ ∀k ∈ �, (3.7)

and with the usual independent variables (t, y), this can be rewritten in the form:

PW (t, y) =

∫ t

tk (y)

B(τ, y) dτ ∀k ∈ � with tk(y) = t ′
k + εy. (3.8)

The general solution of (3.2), which, as shown in figure 4, compares well with
definition (2.5) directly evaluated from the numerical data, is:

W =
b −

√
b2 − 4aC

2a
, (3.9)

in which:

a ≡ ε〈V 〉, b ≡ 〈V 〉 − 2ε〈P̆ 2〉, C ≡
∫ t

tk (y)

B(τ, y) dτ + ε〈M̆22〉 − 〈P̆ 2〉. (3.10)

The other root is not taken into account as it is physically meaningless.
Since ε � 1, we can use the approximate solution W � C/b. Analysis of the fully
numerical solutions described in § 2 shows that the term ε〈M̆22〉 is negligible (less that
5% of C), i.e.

W �

∫ t

tk(y)

B(τ, y) dτ − 〈P̆ 2〉

〈V 〉 . (3.11)

As shown in figure 4, this approximated solution agrees very well with the exact
solution (3.9) and, consequently, with the numerically evaluated definition (2.5).
Moreover (3.11) confirms our initial inference on the physical meaning of W . In
fact, the numerator is an ‘effective water mass flux’ within the swash zone, while the
denominator represents the whole water mass of the swash zone itself. Hence, such a
ratio is clearly the drift velocity of the whole water mass (volume) in the swash zone
and W can be correctly regarded as the longshore current which represents it.

Definition (2.5) and the analytical exact (3.9) and approximated (3.11) solutions to
the longshore problem have all an important role in the following analyses which
lead to the SBCs for the longshore flow. In more detail, the analytical solutions (3.9)
and (3.11) are used to identify the structure of W and, subsequently, define suitable
forms for the required regressions (see § 4) which are obtained by directly using the
results of the chosen numerical solutions which also provide (2.5). In this respect, the
comparison of figure 4 validates the final SBCs, built with the structure of (3.9) and
(3.11), but required to represent the numerically evaluated definition (2.5).

4. Closures and shoreline boundary conditions
In this section, we further elaborate the approximate solution (3.11) to find suitable

SBCs for the longshore motion to be implemented in available circulation models.
We want to express the integral quantities defined in the swash zone as functions of
long-wave properties calculated at xl . Through the relations obtained, we are able to
assign the appropriate SBCs from knowledge of the integral quantities in the swash
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and local wave properties. We first recall the results of Part 2:

〈V 〉 ≡
∫ xh

xl

d dx ≈ CV H 2
l

/
α with CV = 0.615 − 0.201Cf /α, (4.1a)

〈Q̃1〉 ≡ 〈ũd̃〉 ≈ CQ1

√
gH 3

l with CQ1
= 0.356 − 0.273

√
Cf /α, (4.1b)

〈S̃11〉 ≡
〈
ũ2d + 1

2
gd̃2

〉
≈ CS11

gH 2
l with CS11

= 0.792 − 0.574
√

Cf /α, (4.1c)

〈Υ1〉 ≡
∫ xh

xl

τ1 dx ≈ CΥ1
gH 2

l with CΥ1
= −0.034 Cf /α. (4.1d)

Such relations are obtained using periodic input conditions and averaging
〈V 〉, 〈Q̃1〉, 〈S̃11〉, 〈Υ1〉 over single swash events, while Hl is the local (i.e. at xl) wave
height. The same procedure is used in the following to obtain the regressions for the
2DH case. We introduce standard variables, which are commonly used in circulation
models, as follows:

d̄ ≡ 〈d〉, ū ≡ 〈u〉 +
〈ũd̃〉
〈d〉 , v̄ ≡ 〈v〉 +

〈ṽd̃〉
〈d〉 . (4.2)

Finally, from Part 2, we have that, once the incoming characteristic variable R+ =

ū + 2
√

d̄ is known, the SBCs for 1DH flows are:

d̄(xl) ≈ Hl

2
, ū(xl) ≈ R+ −

√
2gHl,

dxl

dt
≈

(
ū − 2

Hl

d〈V 〉
dt

) ∣∣∣∣∣
xl

. (4.3a–c)

By analogy with (4.2) and using Buckingham’s theorem for dimensional analysis, we
assume the following relations:

|〈P̆ 2〉| ≡
∣∣∣∣〈∫ xh

xl

(v̆d) dx

〉∣∣∣∣ ≈ CP2

√
g/α sin(θ)H 5/2

l , (4.4a)

〈M̆22〉 ≡
〈∫ xh

xl

(
v̆2d + 1

2
gd2

)
dx

〉
≈ CM22

g
/
αH 3

l , (4.4b)

〈Q̃2〉 ≡ 〈ṽd̃〉 ≈ CQ2

√
g sin(θ)H 3/2

l , (4.4c)

〈S̃12〉 ≡ 〈ũṽd̃〉 ≈ CS12
g sin(θ)H 2

l , (4.4d)

〈Υ2〉 ≡
〈∫ xh

xl

τ2 dx

〉
≈ CΥ2

g sin(θ)H 2
l , (4.4e)

in which the extra dependence from the angle of wave incidence θ appears with
respect to relationships (4.1). Note that since 〈P̆ 2〉 does not have a defined sign, we
have made the regression of its absolute value. Defining the time scale t0 = α−1

√
d0/g

and the dimensionless period T ∗
s = Ts/t0, we assume the coefficients of (4.4a)–(4.4e)

to depend both on Cf and T ∗
s .

Fitting a fairly large number (64) of fully numerical solutions obtained with periodic
input conditions (see table 2), we obtain the following structure for the regression of
the coefficients above (see figure 5 where, given the very similar regression behaviours
for all periods, only results for the smallest and largest periods in use are shown):

C(...) =
a2T

∗
s

2 + a1T
∗
s + a0

Cf

+
(
b2T

∗
s

2
+ b1T

∗
s + b0

)
+ Cf

(
c2T

∗
s

2
+ c1T

∗
s + c0

)
. (4.5)
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Cf Ts(s) Hs(m) θ (deg.)

0.01 3.2 0.17 6
0.03 4.0 0.23 10
0.05 4.8
0.07 6.4

Table 2. Input parameters used to obtain fully–numerical periodic NSWE solutions required
for the calibration analysis. Definitions as for the caption to table 1.

Note that the dependence on 1/Cf is foreseen by Ryrie’s work (1983) on periodic
breaking waves. We also emphasize that this formulation is valid only when the
longshore flow has reached a quasi–steady state (e.g. Ryrie 1983).

For CP2
we obtain:

a2 = 3.7031 × 10−4, a1 = −1.4087 × 10−3, a0 = 2.1327 × 10−3,

b2 = 0.6423 × 10−3, b1 = 0.3457 × 10−3, b0 = −1.9759 × 10−2,

c2 = 1.7226 × 10−2, c1 = 2.5289 × 10−2, c0 = 6.0260 × 10−2,

for CM22
:

a2 = −0.1515 × 10−2, a1 = 0.4325 × 10−2, a0 = −0.1327 × 10−2,

b2 = 1.9429 × 10−2, b1 = −4.098 × 10−2, b0 = 5.1766 × 10−2,

c2 = −0.3540, c1 = 1.1203, c0 = −0.7790,

for CQ2
:

a2 = 0.1363 × 10−5, a1 = −1.7141 × 10−4, a0 = 4.9529 × 10−4,

b2 = 0.2691 × 10−2, b1 = 0.7012 × 10−2, b0 = −1.2511 × 10−2,

c2 = −8.5690 × 10−2, c1 = 1.3648 × 10−1, c0 = 0.1912 × 10−2,

for CS12
:

a2 = −0.1017 × 10−3, a1 = 0.3038 × 10−3, a0 = 0.2470 × 10−4,

b2 = 0.1240 × 10−1, b1 = −0.3870 × 10−1, b0 = 0.2970 × 10−1,

c2 = −0.1079, c1 = 0.3329, c0 = −0.2497,

and for CΥ2
:

a2 = −0.4191 × 10−3, a1 = 1.3129 × 10−3, a0 = −0.2509 × 10−3,

b2 = 2.1849 × 10−2, b1 = −5.8091 × 10−2, b0 = 4.4079 × 10−2,

c2 = −0.1513, c1 = 0.3673, c0 = −0.2244.

The moderate scatter observed in figure 5 (more evident for small values of Cf )
and in the two following figures reflects the use of different wave conditions.

Now using (4.2), we can expand to its main contributions the longshore momentum
flux appearing in B(t) (see also equation (3.5)):〈(

u − ∂xl

∂t

)
vd

∣∣∣
xl

〉
=

[(
u − ∂xl

∂t

)
vd − 〈Q̃1〉〈Q̃2〉

d
+ 〈S̃12〉 + 〈ũṽ〉d

] ∣∣∣∣∣
xl

. (4.6)

So, defining the time scale α−1
√

Hl/g, which is proportional to the natural swash
period Tswash =

√
gHl/gα (e.g. Baldock & Holmes 1999), using (4.3) and the regressions
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Figure 5. Fitting of short-wave properties. Left-hand and right-hand columns correspond
to the smallest and largest periods in use Ts = 3.2 s, 6.4 s. Along each row are plotted the
regressions curves and the numerically computed data of coefficients CP2
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, CM22
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of equations (4.4) as functions of Cf .
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in (4.4), we assume that (see also Appendix):∫ t

tk(y)

B(τ, y) dτ ≈ H 2
l

α
[C1

¯̄v + C2 sin(θ)
√

gHl], (4.7)

where the first contribution models the mean momentum flux across xl while the
second models all the short-wave interactions and the frictional forces in the swash
zone. Here, C1 and C2 are constants while ¯̄v is the mean value of v at xl for the single
swash at hand:

¯̄v ≡ 1

t ′
k+1 − t ′

k

∫ t ′
k+1

t ′
k

v

∣∣∣
xl

dτ ′. (4.8)

Definition (4.8) is introduced, in analogy with Ryrie (1983), to use a single variable
for each swash which can take into account breaking events. Since a bore implies a
growth of v from each swash to the following one, ¯̄v can, implicitly, account for the
jump in longshore velocity [[v]] and also allows us to clarify the dependence of the
drift W on such forcing. In fact, substituting (4.7) into (3.11) and using the previous
regressions, we obtain the following theoretical form of dependence for W :

W ≈ [C̃1
¯̄v + C̃2 sin(θ)

√
gHl]. (4.9)

The final step is to make the dependence of ¯̄v on Hl explicit. Since bore generation is
most frequent in shallow waters, we want to isolate the contribution due to breaking.
Following the approach used by Ryrie (1983) to analyse periodic breaking waves at
the shoreline, we assume the following relation for ¯̄v:

¯̄v ≈
[
D1 +

D2

Cf

Tswash

Ts

]
sin(θ)

√
gHl. (4.10)

Here D1 models the purely non-breaking nonlinear contributions to W while the
second term represents the contribution due to breaking. The term ¯̄v is unbounded as
Cf goes to zero which is in good agreement with Ryrie’s (1983) results. Substituting
(4.10) into (4.9) we obtain the final expression for W :

W ≈
[
A +

B

Cf

Tswash

Ts

]
sin(θ)

√
gHl. (4.11)

The best-fitting coefficients are:

A = 187.9467C2
f − 23.4849Cf + 0.7939, B = 4.9438C2

f − 0.1512Cf + 0.0239,

and have been derived from the fitting curves reported on figure 6 where, like for
figure 5, the data scatter reduces for increasing Cf .

Equation (4.11) clearly shows the dependence of the drift velocity W on the expected
fraction of the local shallow-water velocity (i.e. sin(θ)

√
gH ) through: a first term (A)

which accounts for short-wave interactions, frictional swash zone forces, the purely
non-breaking nonlinear contributions and a second term (depending on B) which
models breaking forcings.

Evaluation of the performance of the proposed SBCs is given on the basis of further
numerical solutions of the NSWE. These have been run on purpose with input values
different from those used during both the preliminary assessment of the integral
model performances (table 1) and the calibration of the model (table 2). Table 3
summarizes the input values used for the final analysis of the SBCs’ assessment.

Figure 7 shows that equation (4.11) predicts well the numerically computed
longshore velocity for both monochromatic waves (figure 7a) and bimodal waves
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Figure 6. Fitting with (4.11) of the numerically computed values of W (see table 2) as a
function of Tswash/(TsCf ) with: (a) Cf =0.01, (b) Cf = 0.03, (c) Cf = 0.05, (d) Cf =0.07.

Cf Ts(s) Hs(m) θ (deg.)

0.02 4.8 0.10 6
0.04 4.8	 0.14

0.17
0.20
0.23

Table 3. Input parameters used to obtain the fully numerical NSWE solutions used to assess
the value of the proposed SBCs. Definitions as in the caption to table 1.

(figure 7b). The moderate overprediction (about 10%–20%) given by (4.11) for the
smaller friction coefficient (Cf = 0.02) becomes an almost perfect coincidence, for
increasing values of the friction coefficient (Cf = 0.04). Such improvement seems to
reflect the better fits obtained for all the coefficients which require calibration (see
figure 5 and 6) for large values of Cf .

In summary, a simple ‘recipe’ is suggested to prescribe the SBCs. The motion of
the mean shoreline is given by (4.3c) in which the rate of change of the volume
in the swash zone, related to Hl through equation (4.1a), acts to decelerate the
shoreline motion during the run-up and accelerate it during the run-down. At the
mean shoreline, the mean water depth is computed to be about half of Hl (equ-
ation 4.3a). The onshore velocity depends on both local (Hl) and global information
(R+ coming from the interior of the domain brings to the shoreline knowledge of
the deeper water dynamics). Finally, the local longshore velocity is a function of the
incident wave angle θ and period Ts beyond the local wave height (Tswash =

√
gHl/gα).
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Figure 7. Assessment of the predictive capacity of solution (4.11) through a comparison with
the numerically computed values of W for the waves of table 3: (a) monochromatic waves, (b)
bimodal waves. x, Cf = 0.02; ∇, Cf = 0.04.

As anticipated in Part 2, an accurate computation of R+ at xl seems to be the most
crucial issue in correctly predicting the motion of the mean shoreline from a numerical
point of view. Specific problems concerned with the numerical implementation of the
full SBCs (comprehensive of the lonshore motion) are still not known as such full
implementation is still underway.

5. Conclusions
Complete SBCs for wave-averaged 2DH circulation models have been derived

on the basis of an integral version of the NSWE which naturally accounts for the
interactions of long and short waves near the shoreline. The integral model can be used
to provide SBCs for the longshore drift velocity W only if short-wave contributions
are suitably closed. For this purpose and to clarify the dependence of W on the
short-wave properties we have:

(a) obtained an analytical solution for the longshore drift velocity of the swash
zone water masses;

(b) computed short-wave contributions by wave-averaging fully numerical solutions
of the wave-resolved NSWE, the latter being evaluated with an accuracy sufficient to
resolve swash zone flows well.

Contributions to the drift velocity, coming from both nonlinear wave–wave
interaction and wave breaking, are written as functions of known parameters such as
the short-wave period, the angle of wave attack, the friction coefficient and the local
wave height.

Notwithstanding that the main aim of the work is to clarify the structure of the
SBCs for the longshore flow, derivation and assessment of such SBCs have been
made on the basis of a fairly broad range of input wave conditions, which, though
biased towards those typical of reflective beaches, are believed to cover conditions
also typical of moderate dissipative beaches. Although the present calibration will
probably to be further improved, we think that, as the experimental analyses of
Archetti & Brocchini (2002) and of Bellotti et al. (2003) clearly show for the onshore
SBCs, the range of its validity is broader than that covered by the input data used
here.
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Appendix. Derivation of the regression equation (4.7)
A detailed derivation is here given of regression (4.7) used for B(t) defined by (3.5)

and (4.6).
First, use of (4.3), coming from Part 2, leads to:

〈ūv̄d〉 ≈ (
√

gHl)(sin(θ)
√

gHl)Hl = A1 sin(θ)gH 2
l ,

〈Q̃1〉 = 〈ũd̃〉 ≈
√

gHlHl

〈Q̃2〉 = 〈ṽd̃〉 ≈
√

gHl sin(θ)Hl

=⇒ 〈Q̃1〉〈Q̃2〉
d̄

= A2gH 2
l sin(θ),

〈S̃12〉 = 〈ũṽd̃〉 ≈ (
√

gHl)(sin(θ)
√

gHl)Hl = A3 sin(θ)gH 2
l ,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(A 1)

with Ai all constants.
Slightly more complicated is the derivation of the contribution depending on the

velocity of the shoreline. However, recalling that from Part 2 it is 〈V 〉 ≈ Hl/α and
that the time scale is

√
Hl/g/α we easily obtain:[(

ū − dxl

dt

)
v̄d̄

] ∣∣∣∣
xl

= −
[(

2

Hl

d 〈V 〉
dt

)
v̄d̄

] ∣∣∣∣
xl

≈ (
√

gHl)¯̄vHl = A4(
√

gHl)Hl
¯̄v. (A 2)

From a dimensional point of view, integration of B in time merely means a
multiplication by the mentioned time scale and, then, recalling (3.5) and (4.6):∫ t

tk (y)

B(τ, y) dτ ≈ 1

α

√
Hl

g

[
A4

√
gHlHl

¯̄v + sin(θ)gH 2
l (A1 + A2 + A3 + A5)

]
≈ H 2

l

α
[C1

¯̄v + C2 sin(θ)
√

gHl], (A 3)

where A5 accounts for the bottom friction contribution 〈Υ2〉 of equation (4.4e) and
the constants Ci are used instead of Ai .

REFERENCES

Archetti, R. & Brocchini, M. 2002 An integral swash zone model with friction: an experimental
and numerical investigation. Coastal Engng 45, 89–110.

Baldock, T. E. & Holmes, P. 1999 Simulation and prediction of swash oscillations on a steep
beach. Coastal Engng 36, 219–242.

Baldock, T. E., Hughes, M. G., Day, K. & Louys, J. 2005 Swash overtopping and sediment
overwash on a truncated beach. Coastal Engng 52, 633–645.

Bellotti, G., Archetti, R. & Brocchini, M. 2003 Experimental validation and characterization
of mean swash zone boundary conditions. J. Geophys. Res. Oceans 108(C8), 3250, doi:
10.1029/2002JC001510.

Brocchini, M. 1997 Eulerian and Lagrangian aspects of the longshore drift in the surf and swash
zones. J. Geophys. Res. Oceans 102, 23 155–23 168.

Brocchini, M. 2006 Integral swash zone models. Continent Shelf Res. 26, 653–660.

Brocchini, M. & Bellotti, G. 2002 Integral flow properties of the swash zone and averaging.
Part 2. The shoreline boundary conditions for wave–averaged models. J. Fluid Mech. 458,
269–281.



Integral properties of the swash zone and averaging. Part 3 415

Brocchini, M. & Peregrine, D. H. 1996 Integral flow properties of the swash zone and averaging.
J. Fluid Mech. 317, 241–273.

Brocchini, M., Bernetti, R., Mancinelli, A. & Albertini, G. 2001 An efficient solver for nearshore
flows based on the WAF method. Coastal Engng 43, 105–129.

Elfrink, B. & Baldock, T. 2002 Hydrodynamics and sediment transport in the swash zone: a
review and perspectives. Coastal Engng 45, 149–167.

Kamphuis, J. W. 1991 Alongshore sediment transport rate distribution. Coastal Sediments 91
Conference-ASCE, vol. 1, pp. 170–183.

Longuet-Higgins, M. S. 1970 Longshore currents generated by obliquely incident sea waves, 1. J.
Geophys. Res. Oceans 75, 6778–6789.

Mase, H. 1995 Frequency down-shift of swash oscillations compared to incident waves. J. Hydraul
Res. 33, 397–411.

Masselink, G. & Puleo, J. A. 2006 Swash-zone morphodynamics. Continent. Shelf Res. 26, 661–680.

Nielsen, P. 2002 Shear stress and sediment transport calculations for swash zone modelling. Coastal
Engng 45, 53–60.

Park, K.-Y. & Borthwick, A. G. L. 2001 Quadtree grid numerical model for nearshore wave–
current interaction. Coastal Engng 42, 219–239.

Russel, P. E. 1993 Mechanisms for beach erosion during storms. Continent. Shelf Res. 13, 1243–1265.

Ryrie, S. C. 1983 Longshore motion generated on beaches by obliquely incident bores. J. Fluid
Mech. 129, 193–212.

Van Dongeren, A. R. & Svendsen, I. A. 2000 Non linear and quasi 3-D effects in leaky infragravity
waves. Coastal Engng 41, 467–496.

Van Wellen, E., Baldock, T. E., Chadwick, A. J. & Simmonds, D. 2000 Longshore sediment
transport in the swash zone. Proc. 27th Intl Conf. Coastal Engng ASCE, vol. 1, pp. 3139–3150.

Wang, P., Ebersole, B. A., Smith, E. R. & Johnson, B. D. 2002 Temporal and spatial variations
of surf-zone currents and suspended sediment concentration. Coastal Engng 46, 175–211.

Zhao, Q. & Svendsen, I. A. 2006 Quasi-3d modeling of depth-averaged and depth-varying currents
on a barred beach with a swash boundary condition. Coastal Engng (submitted).




